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Abstract— In the present paper, we give numerical solution of the Falkner-Skan equation for the study of two-dimensional 
magnetohydrodynamics steady boundary-layer viscous flow over a wedge in the presence of non-Newtonian power law fluid 
which is represented by a power-law model. The outer free stream velocity is defined in the form of a power-law manner i.e., it 
varies as a power of a distance from the leading boundarylayer. The governing nonlinear boundary layer equations have been 
transformed into a third order nonlinear Falkner-Skan equation through similarity transformations. This equation contains four 
flow parameters that is the stream-wise pressure gradient (β), the magnetic parameter (M), and boundary stretch parameter (λ), 
and non-Newtonianpower-law fluid (m). The governing equations (nonlinear partial differential equations) have been converted 
to an equivalent nonlinear ordinary differential equation along with boundary conditions by means of similarity transformations 
which is solved using the Keller-box method. A far-field asymptotic solution is also obtained which has revealed oscillatory 
shapes when the flow has an adverse pressure gradient. The results show that, for the positive pressure gradient parameters, 
the thickness of the boundary layer becomes thin and the flow is directed entirely towards the wedge surface whereas for nega-
tive values the solutions have very different characters. Also it is found that MHD effects on the boundary layer reduce the 
boundary layer thickness.The results are obtained for velocity profiles and skin friction for various values of physical parameters 
and are discussed in detail. It is also found that the drag force is reduced for dilatant fluids compared to pseudo-plastic fluids. 
The Physical significance of the flowparameters are also discussed in detail. 
Key words- Boundary-layer equations; Non-Newtonian power-law fluid; Magnetohydrodynamics; Moving wedge; Falkner-Skan 
equation; Numerical solution; Asymptotic solution; 

 
                                          ——————————      —————————— 
1   Introduction

The study of two-dimensional magnetohydro-
dynamics (MHD) boundary layer flow of a vis-
cous fluid have attracted large number of re-
searchers during the last decade because of their 
increasing applications in engineering and tech-
nology, such as MHD power generators, MHD 
flow meters and pumps, polymer industry, spin-
ning of filaments etc.. In industrial applications, 
when sheets or filaments are subjected to cooling 
through quiescent fluid, these essentially get 
stretched, but this cooling of the sheets could be 
managed by applying the magnetic field, so that 
we can expect the final products with desired 
characteristics. Because of such important appli-
cations, many investigators have modeled the 
behavior of a MHD boundary layer flow. Ku-
mars et al. [1] have investigated MHD boundary 
layer flow of an electrically conducting fluid past 
a quadratically stretching sheet, and have shown 
that magnetic field makes the streamlines steeper 
which results the boundary layer thinner. Joneidi 
et al. [2] Joneidi undertook the study of heat and 
mass transfer of a viscous and electrically con-
ducting fluid in the presence of the magnetic 

field, and have shown that magnetic field de-
creases the velocity profiles. Su et. al [3] have 
used the differential transform method to inves-
tigate the MHD Falkner-Skan flow over a perme-
able plate in the presence of a transverse mag-
netic field, and have discussed the effects of vari-
ous physical parameters on the boundary layer 
flow. 
 
 In recent years there has been some interest in 
the boundary layer flows of non-Newtonian flu-
ids. Many important industrial fluids are non-
Newtonian fluids. One particular class of materi-
als of considerable interest is that in which the 
effective viscosity depends on the rate of shear-
ing on the flow rate. Most particulate slurries 
(coal in water, sewage sludge and inks, etc.) and 
multiphase mixtures (oil-water emulsions, gas-
liquid dispersions such as froths and foams, but-
ter, etc.) are non-Newtonian fluids as well as 
melts and solutions of high- molecular weight 
naturally occurring and synthetic polymers. 
Other examples of systems displaying a variety 
of non- Newtonian characteristics include phar-
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maceutical formulations (cosmetics and toiletries, 
paints, synthetic lubricants), biological fluids 
(blood and saliva, etc.) and food stuffs (jams, 
jellies, soups, marmalades, etc.). Because such 
fluids have more complicated equations that re-
late the shear stresses to the velocityfield that 
Newtonian fluids have, additional factors must 
be considered in examining various fluid me-
chanics and heat transfer phenomena.  
One of the main area of interest is the boundary-
layer behaviour of a non-Newtonian fluid past a 
surface in motion relative to either a stationary or 
moving fluid. This situation represents a differ-
ent class of boundary-layer problem which has a 
solution substantially different form that of the 
boundary-layer flow over a fixed surface and is 
an important type of flow occurring in a number 
of material processing applications. Rajagopal et 
al. [4] looked at the boundary-layer flows of flu-
ids of second grade, and later, Rajagopal et al. [5] 
studied the Falkner-Skan flows of a homogene-
ous incompressible fluid of second grade. 
Andersson and Dandapat [6] were the first who 
have obtained similarity solutions for the non-
Newtonian flow of a power-law fluid past an 
impermeable stretching surface, while Anders-
son et al. [7] have extended this problem to the 
case of a magnetohydrodynamics flow of a 
power-law fluid over a stretching sheet in the 
presence of a uniform transverse magnetic field. 
The boundary-layer flow of a non-Newtonian 
power-law fluid with injection on a permeable 
semi-infinite flat plate which moves with a con-
stant velocity in the opposite direction to that of 
the uniform mainstream has been considered by 
Akcay and Yijkselen [8]. Kudenatti et al. [9] un-
dertook the study of the exact solution of two-
dimensional MHD boundary layer flow over a 
semi-infinite flat plate. And also Kudenatti et al. 
[10] have developed similarity solutions of the 
MHD boundary Layer flow past a constant 
wedge within porous media. Xu et al. [11] have 
investigated the boundary layer flow and heat 
transfer in an incompressible viscous electrically 
conducting fluid that is caused by impulsive 
stretching of the surface and used a well-
developed homotopy analysis method. They 
showed that the magnetic parameter reduces the 
boundary layer thickness but enhances thermal 
boundary layer thickness. 
In this present paper, we have made an attempt 
to give numerical solution of MHD Falkner-Skan 
equation of non-Newtonian fluid for general 
values of β, Hartman number M, power law fluid 

m and boundary stretch parameter λ. We find 
out that the behavior of the boundary-layer flow 
for various values of the velocity ratio of the 
plate to different flow parameter and of the 
power-law index. 
2 Formulation of the problem 
We consider the two dimensional MHD laminar 
boundary-layer flow of a viscous and incom-
pressible fluid over a flat plate with wedge which 
is moving constant velocity Uw(x) in the pres-
ence of magnetic field B(x) in a non-Newtonian 
power-law fluid. The positive x-coordinate is 
viscous and incompressible measured along the 
surface of the wedge with the apex as origin, and 
the positive y-coordinate is measured normal to 
the x-axis in the outward direction towards the 
fluid. The fundamental equations for the flow of 
an incompressible fluid are the conservation of 
mass, linear momentum. 

We express these equations in the absence of 
body forces as follows: 

∇ ∙ q = 0   (1) 

                                                        (2) 
where ρ  is the fluid density, p  is the pressure, 
and 

))( BBqEBJ 
+=× ρ  is a Lorentz force. This 

body force represents the coupling between the 
magnetic field and the fluid motion which is 
called Lorentz force. The induced field is as-
sumed to be negligible. This assumption is justi-
fied by the fact that the magnetic Reynolds num-
ber is very small. This plays a vital role in some 
engineering problems where the conductivity is 
not large in the absence of an externally applied 
field. It has been taken that 0=E . Thus the Lo-
rentz force is given by 

qBBJ 
2σ−=× .  

Since the magnetic drag is a body force on the 
moving fluid and τ  is the deviatoric stress ten-
sor and is defined as 

)(qµτ =              (3) 
where q is the second invariant of the strain-rate 

tensor. The shear rate q  is given by 

( )2
1

:
2
1 qq  =q .   (4) 

with 
)( Tuu  ∇+∇=q                  (5) 

The constitutive viscosity relation µ  for the 
Ostwald-de Waele power-law model is given by 

BJpqq
t


×+⋅∇+−∇=






 ∇+
∂
∂ τρ ).
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mK )(q=µ                  (6) 
where K  is the material constant and the index 
m represents the degree of shear thickening or 
thinning. We note that the Newtonian viscosity 
relationship is recovered for 1=m . This parame-
ter m  is an important index which subdivides 
the fluids into pseudo-plastic fluids or shear- 
thickening when 1>m  and dilatants or shear-
thinning for 1<m . Bird et al (1987) can be re-
ferred to the through account of the rheological 
data on m . The hydrodynamics of other values 
of m shall be discussed later. The velocity vector 

),( vuq = where u  and v  are the velocity com-
ponents in x  and y directions respectively, and 
thus from (4), we have that 
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using (5). We consider the problem of two-
dimensional, incompressible and steady state 
laminar boundary-layer flow over a wedge 
which moves with velocity )(0 xU w in a non-

Newtonian power-law fluid. The positive x -
coordinate is measured along the surface of the 
wedge with the apex as origin, and the positive 
y -coordinate is measured normal to the x-axis 

in the outward direction towards the fluid. Un-
der these approximations, the governing equa-
tions for the steady two-dimensional laminar 
viscous flow of a non-Newtonian fluid. It is con-
sidered that the wedge moves with velocity 

)(xU w  along or opposite to the mainstream 

flows )(xU . Using the standard boundary-layer 

approximations and for large eR we have that 

x
u
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∂
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>>
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. Thus the system 

(1)-(2) can be written as 
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∂
∂
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Similarly, we get              
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                                                                             (10)                                                                                                                                             

where 

y
uq
∂
∂

=    (11) 

To this end, we consider the MHD two-
dimensional incompressible flow of the non-
Newtonian Ostwald-de Waele power-law fluid 
over a moving wedge which is moving wedge 
which is moving with velocity wU 0  either along 

the mainstream flow with  0U  or opposite to it. 

The Cartesian co-ordinate system is adopted to 
the wedge wall the inviscid main stream veloci-
ty 0U is assumed in the form of power of a dis-

tance that is 
n

o xUxU *
0 )( ∞=                                            (12) 

where ∞U  is a non-negative constant and n  is a 
constant related to the pressure gradient defined 
later in this section. Now, in order to derive 
boundary layer conditions, the physical quanti-
ties and variables specified in (1) and (2) are non-
dimensionlized 

,
*

L
xx = ,

*

δ
yy = ,

*

U
uu = ,

*

U
vv = ,

*

∞

=
p
pp  

 UL ,,δ and ∞P  are certain reference values. 
These choices lead to define the Reynolds num-
ber for the Ostwald-de Waele power- law fluid as 

K
U nn −

=
2

Re ρδ
. 

For a large Re  the flow divides in to near-field 
(boundary- layer region) and far field regions. In 
the boundary-layer region of thickness of δ , a 
very large velocity gradient exists. The boundary 
layer equations can be derived based on the ap-
proximations concern the following measure-
ments. Let )(0 xU  be the velocity of the main-

stream flow along x-direction outside the bound-
ary layer. The key idea involved in making the 
boundary layer approximation is that the viscosi-
ty effects are dominant in the adjacent to the sur-
face. If δ is the thickness of the boundary layer, 
then L<<δ . Hence V is much smaller than U . 
Also other basic approximation is  

x
u

y
u

∂
∂

>>
∂
∂

. Further, it is also assumed that  

 

x
p

y
p

∂
∂

<<
∂
∂

 in meaning that the pressure p  in 

the boundary layer is a function of x  only (to the 
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approximation). With L<<δ   the term 2

2

x
u

∂
∂

  

can be neglected in comparison with 2

2

y
u

∂
∂

. Ve-

locity compared to the free stream velocity ∞U  
with these assumptions, we have the number of 
component equations reduce to those in the flow 
directions. The number of viscous terms in the 
direction of flow can be reduced to only domi-
nant term. This amounts viscous terms are 
measured in terms of the boundary-layer thick-
ness. And the inertial terms of the characteristic 
length L. Thus along with these boundary- layer 
approximations. Equations (8), (9) and (10) for 
steady case may be written as 

                             0=
∂
∂

+
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,     (14)                                       
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       (15) 

                                     
y
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∂
∂

=0     (16) 

where K  is called the consistency coefficient 
and m is non-dimensional, and the dimension of 
K  depends on the value of m . The two-
parameter rheological equation (15) is known as 
the Ostwald-de-Waele model or more commonly, 
the power-law model. The parameter m is an 
important index to subdivide fluids into pseudo-
plastic fluids )1( <m  and dilatant flu-
ids )1( >m . The extreme cases of the power-law 
model are )1( =m for Newtonian behaviour and 

)0( =m  for plastic or solid behaviour. To de-
termine the pressure distribution, the velocity at 
the edge of the boundary layer is equal to the 
mainstream flow )(0 xU  and by Bernoullis theo-

rem, the pressure would be constant in the 
inviscid flow influenced by the applied magnetic 
field. In order that equations (14) and (15) reduce 
to similarity form, we assume that the boundary 
conditions for these equations are of the follow-
ing form 
         at  ,0),(:0 0 === vxwUuy             (17) 

        as ∞→∞→ 0: Uuy  

where )(0 xwU is the stretching surface velocity 

which obeys the power-law relation  
mxUxwU ∞= 00 )( . In (17), the condition on u 

on the surface signifies that the wedge surface is 
moving, and wv  is constant. The conditions on 

the velocity at infinity mean that the velocity ap-
proaches the mainstream flow far-away from the 
wedge surface. Thus, the main boundary layer 
effects are restricted to the immediate neigh-
bourhood of the surface. System (10) and (11) 
allows reducing both dependent and independ-
ent variables to one each by the following simi-
larity transformations. This is further evidenced 
by the similar velocity profiles existing in the 
boundary layer for any x  in the stream wise 
direction. The pressure change across the bound-
ary layer is negligible (i.e., constant) and pres-
sure can be treated as function of only flow direc-
tion.  
Since the pressure is uniform throughout the 
flow field from the Burnoullis equation, with 

∞= 0Uu  outside the boundary layer, we have 
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It is clearly observed that the system (14) and (15) 
with two unknown functions u  and v  are easily 
reduced to an equation with one unknown func-
tion by defining the stream function ),( yxψ as 
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with boundary conditions 
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∂
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 nxU
y

)(0∞=
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The similar solutions of equation (21) can be ob-
tained by using similarity transformation 
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K

xUn m
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*1+−
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=
ρ

η          (23) 

where 

1
)1)(13(*

+
−−

=
m

mnm . 

Substituting (23) in to (21) we get the following 
ordinary differential equation. 

( )
( ) 01

1
)1(11

2

2

2
0

=−′

−′−
−+

+′′
+

+′′′
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     (24) 
and a new set of boundary conditions, 

,0)0( =f      ,)0(' λ=f       1)(' =∞f   (25) 
where 

1
0 )('')( −= mfm ηηµ   

where primes denote differentiation with respect 

to η  and 
∞

=
0

0

U
U wλ is the ratio of the wall veloci-

ty to the free stream fluid velocity and 0>λ  
corresponds to the situation when the wall 
moves in the opposite direction to the free stream 
(and vice-versa), while   0=λ  is for a fixed 

wall. And 
1

2
+

=
n

nβ  is the pressure gradient 

variable parameter. The system (24)-(25) de-
scribes the two-dimensional MHD laminar 
boundary layer flow of a viscous fluid over a 
moving wedge. Here 0>β  is the case for a 
favorable pressure gradient where as 0<β , it 
is adverse pressure gradient. For 0=β  the flow 
reduces to the well-known Blasius type flow. The 

parameter )
)1(

2(
0

B
mU

M
+

=
∞ρ
ρ

 is the 

magnetic (Hartmann number) parameter which 
is the ratio of electromagnetic field to the viscous 
force. 
3. Numerical solution 
Since the analytical solution is usually not possi-
ble because of high non-linearity, we resort to 
solve it numerically using Keller-box method. 
For this we convert equation into first order sys-
tem by introducing additional unknown func-
tions as 
                            Uf ='                              (26) 

                            VU ='                                  (27) 
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where 
1

0
−== mVmB µ  and boundary condi-

tions equation (22) becomes 
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Using the backward finite difference operators 
for the system (26-28), we get 
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The above system necessarily produces a nonlin-
ear algebraic system of equations for each grid. 
We linearize the above system by introducing, 

l
j

l
j

l
j fff δ+=+ )1(  , where l

jfδ has to be correct-

ed at each step, we drop the product terms of like 

jj Vf δδ ,  etc and also neglected square terms in  

jfδ , then, we get 

and the boundary conditions are 
,000 == Uf δδ    0=NUδ          

1,,0 00 === NUUf λ                 (33) 
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At 1=j , 
from equations (30 - 32)we get, 
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Using the above boundary conditions (33) in (30) 
- (32) we get a block tridiagonal matrix wherein 
each element is again 33×  matrix, in the form 

RAD =                                            (34) 
is essentially a linear system. 
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where  j = 2; 3; 4; :::. The tridiagonal structure (37) 
can be solved using LU decompositionmethod. 
The velocity equation for similar for each pres-
sure gradient and magnetohydrodynamic-
sparameters the Keller-box code also given other 
required derivedquantities such as the velocity 
profiles. The numerical solution of equation (25) 
fordifferent parameters M, λ, β, and m has been 
obtained. Results for the skin fritioncoefficient, 
velocity profiles and numerical solutions are re-
ported. It has been shown that multiple solutions 
are possible when the wedge and the fluid move 
in the opposite directions, near the region of 
separation. The drag force is reduced for dilatant 
fluids compared to pseudo-plastic fluids, these 
results are affirmed by the asymptotic solution of 
the governing equations for far-field. 
  
5 Results and Discussion 
The similarity solutions of the MHD Falkner-
Skan equation for non-Newtonian fluid are ob-
tained for all physical parameters. This equation 
describes the MHD flow of a viscous fluid over a 
wedge is moving. The flow is governed by the 
nonlinear differential equation of order three and 
is solved by different approaches. The validity 
and efficiency of the solution method are tested 
for various parametric values of β, M, m and λ 
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are compared with the numerical solution of the 
MHD Falkner-Skan equation. We also investi-
gated the nature of the distribution of velocity in 
the boundary layer region at which the effects of 
permeability, magnetic number are taken into 
account. Numerical values for these parameters 
are taken which have been extensively used in 
the previous theoretical studies. In particular, we 
have taken the range of values for which the so-
lutions are predicted and boundary layer flows 
are realized. Further, the direct numerical solu-
tions of the MHD Falkner-Skan equation are ob-
tained via finite difference based Keller-box 
method. This is a standard method for solving 
nonlinear boundary value problem on a closed 
interval, in which the Falkner-Skan is converted 
into an equivalent system of first order equa-
tions.The outer boundary condition is taken 
at very large value of ɳ, that is, 1max >>η . The 

standard central difference schemes are used for 
the first order equations, and resulting nonlinear 
algebraic equations are linearized and solved. 
Our Keller-box code adapts a variable discretiza-
tion step size to ensure the desired accuracy in a 
double precision which was set to 810−  in all 
our computations. This is because a precise value 
of )0(''f  would be required to compare solu-
tion with the numerical ones.  
Figure 1 depicts the variation of velocity profiles 

)(' ηf  as a function of η  for different values of 
magnetic parameter M when the wedge is fixed. 
There have been simulated using the Keller-box 
numerical method that is described in section 5. 
This code starts to predict magnetohydrodynam-
ics fluid (MF) effects on the boundary-layer flow. 
It is noticed that thickness of the boundary-layer 
decreases for increasing magnetohydrodynamic 
fluid. In other words the fluid is attached to the 
wedge surface. Physically, it is that the magneto-
hydrodynamic fluid releases more energy to the 
fluid flow in which the fluid acquires more mag-
netization. Accordingly, the fluid particles more 
faster as a result velocity increases. Thus, the 
boundary-layer thickness naturally decreases. 
Also, the flow in the magnetohydrodynamic 
fluid is always stable which is known from the 
literature that is confirmed by the present stud-
ies. Alternatively, when the wedge has same 
speed  5.1=λ  From the figure 2 predicts the 
same features of the boundary-layer for an ap-
plied magnetohydrodynamic fluid. In this case 
also the 

boundary-layer thickness decreases for increas-
ing M. 
In the figure (1 or 2), the boundary-layer domain 
is not too large and the Keller-box method con-
verge with 8 iterations exactly when the floer-
ance was set to 810− . Theseresults are further 
affirmed by the asymptotic solution ( section 4) 
for various values of M (these have not shown 
because of the similar nature). Furthermore, fig-
ures 1 and 2 are plotted respectively for m = 0.6 
(pseudo-plastic fluids) and m = 1.2 (dilatant flu-
ids). It is noticed that whether for shear-thinning 
boundary-layer (m < 1) or shearthickening 
boundary-layer (m > 1), the magnetohydrody-
namic fluids the same effects on the study two-
dimensional boundary-layer flow. 
 Alternatively, the effects of Ostawald-de-waele 
non-Newtonian power-law fluid on the bound-
ary-layer flow are studied. Figure 3 explored this 
effect for various values ofm and two set of _ and 
keeping others constant. The effect of the power-
law fluidis clearly distinguished from that of the 
Newtonian case (m = 1). The boundarylayer 
thickness for the for the shear thinning fluids (m 
< 1) is quite smaller compared to their counter-
parts (m > 1). In otherwords, the viscosity, effects 
are predominanton the boundary-layer of the 
shear thinning fluids compared to shear thicken-
ing fluids (m > 1). The magnetic field has the 
same effects on the flow irrespective of 1≠m  as 
discussed in figure 1 and 2. It is also noticed that 
when λ = 0, all the profiles approachtheir end 
condition from the below (figure 3a) and profiles 
in the Figure 3b approach from the above in the 
speed. In the case of figure 3b results, the wedge 
speed is 1.5 times grater than that of the main-
stream velocity, hence, the profiles approach 
from above Dabrowiski and Denier (2004) have 
shown for λ = 0 that irrespective values of m, the 
profile approach their-end condition algebraic 

manner i.e. 1
1

1)(' −
+

+= m
m

Af ηη , where A some 

constant depending on m and 1≠m . From the 
computational point of view, the Keller-box code 
converges to the desired solutions ( mainly  

)(' ηf and the wall shear-stress )0(''f  in  
38 iterations for all values of m and λ tested. Add 

something on computation. 
We now move on to discuss other important fea-
tures of boundary-layer flow in terms the viscos-
ity profiles. These are given by (figures 5-8 ). Our 
Keller-box code simultaneously simulates these 
viscosity profiles along with the velocity profiles 
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for all the system parameters. The case for m = 1 ( 
Newtonian fluid) demarcates the viscosity pro-
files from those of 1≠m . The viscosity shapes 

)(0 ηµ as a function of ɳ for varies values of the 

shear-thinning fluids (m < 1) are plotted in figure 
4. As in the case of the Newtonian fluid where 
the viscosity becomes constant (see figures 5-8), 
the viscosity solutions grow unboundedly within 
the confines of the boundary-layer as ɳ increases 
from 0. For smaller values of m say (0.6) the in-
crease of the solutions is more than exponential 
ans has m increases to 1, this becomes linear. We 
note that these viscosity profiles further increase 
for increasing either the pressure gradient β or 
the magnetic field parameter M as is seen clearly 
in figures 5. This shows that ∞→)(0 ηµ  as  

∞→η  all parameters when m < 1.  
Furthermore, figures 7 and 8 predicts the viscos-
ity shapes 0µ  for he shear-thickening fluids (m > 

1) which are quite different from those of figure 4 
compared to figures 5 
and 6. Since m > 1, 00 →µ as ∞→η  for any 

choice of other parameters. The shear flow 
)('' ηf  tends to zero as ∞→η , the viscosity  

0µ  given by (figures 7-8) also tends to zero. In 

otherwords, the viscosity solutions become zero 
near the edge of the boundary-layer. There is an 
exponential decrease to zero as ∞→η , and 
this rapidness of the decrease is rather more for 
largevalues   of   m say (1.6) 
 

 

Fig. 1. Variation of velocity profiles )(' ηf with 

η  for  5,4,3,2,1=M  , ,0=λ   33.0=β   and  

6.0=m   . 

 

Fig.2. Variation of velocity profiles )(' ηf with 

η  for  5,4,3,2,1=M  , ,5.1=λ   33.0=β   

and 2.1=m . 
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Fig.3(a). Variation of velocity profiles )(' ηf with η  for  

4.1,2.1,0.1,8.0,6.0=m  , ,0=λ   6.0=β   and 5.1=M . 
 

 
Fig.3(b). Variation of velocity profiles )(' ηf with η  for   

4.1,2.1,0.1,8.0,6.0=m  , ,5.1=λ   6.0=β  and 5.0=M . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig.4. Variation of velocity profiles 0µ with η  for  

9.0,8.0,7.0,6.0=m  , ,2.1=λ   33.0=β   and 0.1=M . 
 
 

 
Fig.5. Variation of velocity profiles 0µ with η  for  

9.0,8.0,7.0,6.0=m  , ,2.1=λ   0.1=β  and 0.1=M . 
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Fig.6. Variation of velocity profiles 0µ with η  for  

7.1,16,5.1,4.1,3.1=m  , 0.1=β  and 5.1=M . 

 
Fig.7. Variation of velocity profiles 0µ with η  for  

7.1,16,5.1,4.1,3.1=m  , 33.0=β  and 5.1=M . 
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